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Two ions in a Penning trap: Implications for precision mass spectroscopy
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With the goal of increasing the accuracy of Penning-trap mass spectroscopy to a part in 10'!, we mod-
el the motion of two simultaneously trapped, dissimilar ions. Simultaneous cyclotron resonance on two
trapped ions will circumvent the problem of temporal instability in the trapping fields. Conservation of
energy and canonical angular momentum require that, in the regime appropriate for mass spectroscopy,
the average interion spacing be an approximate constant of the motion. Cyclotron-frequency perturba-
tion from ion-ion repulsion is therefore limited. Orbits that minimize measurement errors from residual
field imperfections are shown to be both stable and attainable. Experimental results demonstrating the
simultaneous trapping of a single N,* ion and a single CO* ion are presented.

PACS number(s): 07.75.+h, 32.80.Pj, 46.10.+z, 41.90.+¢

I. INTRODUCTION

The most accurate comparisons of ion masses are
currently performed in Penning traps [1-3] by alternate-
ly loading the two ion species being compared. The trap
is loaded with a few ions, or even a single ion of one
species; its cyclotron frequency is determined; the ion is
replaced with a second species; and the new cyclotron
frequency is determined. With corrections for various
trap perturbations, the ratio of the cyclotron frequencies
is simply the inverse of the mass ratio. Sequential-
measurement technique has progressed to the point
where mass ratios may now be determined to better than
a part in 10, but further improvement in accuracy must
surmount a formidable technical obstacle—temporal in-
stability in the magnetic field at the site of the ions.
While the trapped species are being exchanged, any
unpredictable changes in the magnetic field introduce
random errors in the measured mass ratio. Let us take as
an example an ammonia mass doublet (’NH;% and
“NDH,") whose masses differ by about 5 parts in 10*.
To make a major impact in fundamental-constant work
[4], the mass ratio must be determined to a part in 10!
A traditional sequential measurement must determine
each ion’s cyclotron frequency to tens of microhertz out
of 7 MHz. While the ions are being exchanged, the drift
in the magnetic field must be known to a part in 10!! over
an hour or more. Also draconian is the requirement on
electric-field stability [S]: 2 parts in 10,

On the other hand, if the two ions are measured simul-
taneously, in the same trap, the requirements on both
electric- and magnetic-field stability relax immensely. As
we shall see in Sec. IV, to compare the masses in a mass
doublet the only quantity that has to be measured to real-
ly high precision is the instantaneous cyclotron-frequency
difference, which is relatively insensitive to field drift.
The magnetic field must be constant only to parts in 108,
the electric field only to a part in 10%, both standards al-
ready achieved in our apparatus. (An alternate route to
higher accuracy involves improved stabilization of the
trapping fields. For example, Van Dycke et al. [6] and
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Gabrielse and Tan [7] have shown that the region at the
center of the trapping magnet can be shielded from fluc-
tuation in ambient fields by savvy design of supercon-
ducting coils.)

Although simultaneous two-ion cyclotron resonance
resolves the problem of temporal field drifts, it raises new
problems. If the two ions are too close together in the
trap, the Coulombic coupling may perturb their cyclo-
tron frequencies unacceptably. On the other hand, if the
ions are well spaced, any residual spatial inhomogeneity
of the trapping fields may affect the two ions unequally.
The point of our paper is to examine the motion of two,
simultaneously trapped ions, with emphasis on the impli-
cations for precision mass spectroscopy. As far as we
know, our work is the first to examine carefully the
Penning-trap motion of two ions in the well-separated,
“orderly” regime.

II. BASIC TWO-ION MOTION

The ideal Penning trap [8] consists of a strong, uniform
magnetic field, and a quadrupole electric field, usually es-
tablished by three electrodes, all hyperbolas of rotation
(Fig. 1). We write the electric and magnetic fields in cy-
lindrical coordinates as

E(p,2)=(V,/d*)pp/2—22) ,

B=BZ,
where V, is the potential between the ring electrode and
the endcap electrodes and d is the characteristic trap size,
defined in Fig. 1. In the ideal fields, the equation of
motion is linear and is readily solved to yield three nor-
mal modes, known as the axial, the magnetron, and the

trap cyclotron modes [9]. The frequencies are, respec-
tively,

w,=[eV,/(md?*)]'?,
O =[0, —(0?—202)"?]/2,

0, =[0,+(@?—27)']/2
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FIG. 1. The geometry of the Penning trap. The electrodes
are hyperbolic surfaces of rotation. In our trap,
po=0.696 cm and z,=0.600 cm, giving an effective trap size
d=(p}/4+2}/2)"/=0.549 cm.

where o, is the free-space cyclotron frequency;
o.=eB /(mc). We refer to the magnitudes of the normal
mode motions as the mode radii, denoted, respectively,
by a,, p,,,» and p.. The trap cyclotron mode is so named
because in the limit of vanishing electric fields the trap
cyclotron frequency approaches the free-space cyclotron
frequency. For precision mass spectroscopy in a Penning
trap, the electric field is always weak enough that
©.L>> 0, >>0,,.

The motion of two ions in a Penning trap is a three-
body problem and in general cannot be solved exactly.
However, in the regime of experimental interest we can
make several useful approximations. If the initial ion-ion
separation p; is large enough to keep the ion-ion coupling
weak, we can carry over from the single-ion solution the
idea of independent cyclotron and axial motions for each
ion. Ion-ion interaction will perturb the frequencies of
these four modes, to be sure, but we will not have to
think of the axial or cyclotron motions as collective
modes of the two ions.

The magnetron motion, however, is another story. The
unperturbed magnetron frequencies of a mass doublet are
so nearly degenerate that even a small perturbation will
strongly couple the magnetron modes. We will use con-
servation principles to establish that the distance between
the two ions—an important quantity that sets the scale
of ion-ion perturbations—is an approximate constant of
the motion. Further, we will show that the geometry of
the locked magnetron motion is such that, over time, the
ions sample very similar fields.

A. Conserved quantities

Regardless of the number of ions in the trap, the total
energy and the z component of the total canonical angu-
lar momentum [10] are conserved quantities. As a first
pass at the problem of two-ion motion, let us imagine
that the axial and the cyclotron radii of both ions are
zero, and write the energy and canonical angular momen-
tum in the Coulomb gauge as

—eV, 2
E=——"(p4+p)+ S +1m (p)P+1m, (5,2, .1
4d2 P 2 2

S

A

L=L3=S2 (o +pdtmp Xpytmapy Xy, 22)
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where p,=p,—p, is the ion-ion separation [Fig. 2(a)].
Here, and throughout the paper, the subscripts 1 and 2
refer to properties of one ion or the other, and the sub-
script O refers to properties of a hypothetical ion whose
mass is the average of the masses of the two ions. We
now rewrite the equations, explicitly separating out the
effects of the ion-ion perturbation:

—eV, m, o —eV, m,w?
E= 2 I+ 1%“m1 + 2 t 2%%m2
P 4a2 2 P2 " 4a? 2
2
+p—+SKE , (2.3)
s
L,=p} L moe +p3 Eg—m ®,, | S (2.4)
z 2¢ 1%m1 2 2 2%9m2 L >

where we have substituted for the ion velocities the
values of their unperturbed magnetron velocities:
pi=—0,,ZXp;. The small errors associated with this
substitution are accounted for in the terms Sgz and S,
(for small bit of kinetic energy and of angular momen-
tum, respectively). The ion-ion interaction is represented
only by a potential term, ez/ps, and by the two small
corrections Sk and S;. We now make two key approxi-
mations (whose validity we will verify shortly): first, that

(c) ///gf

o

FIG. 2. The magnetic field comes up out of the plane of the
figure. (a) When only the magnetron motions are considered,
the angular momentum and energy of the system of two parti-
cles are well approximated by functions only of the distances
p1=|p1l, p2=1p2l, and p,=|p,|. (b) Any initial positions of ions
1 and 2 can be described as superpositions of the common-mode
vector p.., and the separation vector p;. Both vectors rotate
clockwise. In a frame rotating at w;, the ions trace out counter-
clockwise tandem circles centered on opposite sides of the ori-
gin. The angular frequency of the motion is @; — Wcom. (¢) If the
common-mode motion is cooled, the ions are “parked” in orbits
on either side of the origin. This configuration ensures that, as
the ions move around the trap center, they sample very-nearly-
identical annular rings, thus minimizing the amount by which
spatial inhomogeneities in the trapping fields affect the mea-
sured frequency mass ratio.
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Oy =@Omy=0,0 and second, that Sgp=S5;=0.
Defining a mass splitting 7 such that m;=my(1+7) and
my=my(1—n), we rewrite the energy and angular
momentum:

2 2
E e2 2 2 — W70 Dm0
mg  ep, (pit+p2) | — >
2
[0
+(p2—p?) "2"“’ , 2.5)

L. 2. 2_ 2
;;)——(pl+p2)(wco/2—a)m0)+(p1—p2)(—nwmo) . (2.6)
p, and p, evolve over time, but conservation of energy
and angular momentum put a strict limit on the amount
p, can change. In order to conserve L,, changes in p?
and in p3 must be related. Equation (2.6) gives

210 g
i+p3)=—"7—8(pI—p3) . 2.7
d(p1+p3) wco_zwmo8(pl p7) 2.7
We will simplify expressions using the inequality
. >w,>w0,. (In practice, the ratio is about

8000:160:1.6 for a mass-18 ion.) Combining Egs. (2.5)
and (2.7) and making use of the approximation
©,, ~©2/(2w,), we find that changes in the ion-ion po-
tential energy are restricted:

e?

mops

2
_ M%mo

6
2

8(pi—pd) . 2.8)

And what, typically, is the maximum expected change
in (p2—p3)? As we shall see in Sec. III, ions are typically
loaded into the trap with an initial separation p; =2p .,
where p_ . is the length of the average position vector,

pcomz(pl+p2)/2 .

Further, as we shall see below, both p; and p.,, are ap-
proximate constants of the motion. The maximum
change in (p?—p?) we can expect then is about 2p?,
which implies that the maximum possible change in p; is

aps — nwgno
Ps 02

) (2.9)

where we have defined the coupling constant

Q=(e2/myp3)'"? . (2.10)
In the limit of degenerate masses (7 goes to 0), the ion-
ion separation p; is a constant of the motion. p, remains
an approximate constant of the motion as long as the
mass splitting is small compared to the coupling,
7 <<Q?/w?,.

We will look more carefully at the effects of nondegen-
erate masses on the orbits in Sec. IV below, but for now
we keep 7=0 and make the purely geometrical observa-
tion [11] that since p, and pi+p3 are both constant, so
must be p.,,. The allowed ion motions thus decompose
nicely into a common mode and a “stretch” mode [Fig.
2(b)]. The stretch mode is so called in analogy with tight-
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ly coupled harmonic oscillators, although of course in
this case a vector pointing from one ion to the other does
not stretch in length but merely rotates.

Let us recheck our earlier assumptions for self-
consistency. First, how large are the supposedly small
terms Sgy and S; and how much did neglecting them
affect the calculated length of the vectors p,,, and p,?
Because the ions are in a strong magnetic field, the elec-
tric field from each ion induces an E-cross-B drift in the
other. These drifts are relatively small corrections to the
unperturbed ion velocities, and (for the magnetron
motion) the velocity terms are in turn relatively much
smaller than the electric and magnetic potential contribu-
tions to the total angular momentum and total energy.
The magnitude of the E-cross-B velocity is cE;,, ., /B, or
ec /(Bp?). The largest change that this drift could cause
in the angular momentum would be if the induced drift
were perpendicular to the ion’s position vector p; and if
that vector were at its maximum length. Given the typi-
cal experimental initial conditions mentioned above,
pi =p;, so that the change in angular momentum must be
less than

8S; =mqyce /(Bp,)=mopX(Q*/w,) . 2.11)

Similarly, the maximum change in the Kkinetic energy
occurs when the drift velocity is adding to or subtracting
from the ion’s maximum velocity. The maximum possi-
ble change in the kinetic energy is then

8Ske =M oP:(@mo/ @) .

Reinserting the maximum values 8S; and 8Sgy back into
the the conservation equations [(2.5) and (2.6)] from
which they were discarded, we rewrite Egs. (2.7) and
(2.8), this time indicating the order of the error associated
with the approximation:

8(pi+pd) 2w, 8(pi—pd) 2
P12P2 __ “MDmo P12P2 +0 Q_z 21
Ps 00 200 Ps WDeo
8p; _ —mwho 8(pt—p3) %o 2.13)
ps 207 pf % '

It is easy to verify that the errors in p and p_,,, associ-
ated with our other major approximation, o,,;=w®,,
~w,,, are smaller still. The errors in the results ob-
tained so far in this section are thus small as long as
w2y << kg, O?<<w?y, and No?, <<Q>. These inequalities
are all experimentally realizable. With the reasonable ini-
tial value of p; =0.10 cm, we have in our trap for the am-
monia  example previously cited, Q*=8X105,
nw?, /Q*=4X10"3, Q¥/0%=4X107% and o0%/0%
=5X10"%

B. Locked motion

Having established the geometry of the modes (or ap-
proximated them, in the more realistic case of nondegen-
erate masses) by the use of conservation principles, we
can confidently solve the equations of motion for the cor-
responding frequencies. The equations of motion for two
particles moving in the midplane of a Penning trap are
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. _eB. . eV, eZ(Pl_Pz)
mlpl c pIXz+ 2d2p1+ |p1_p2|3 , (2.14)
eB ~, eV eXp;—p,)
5 =60 . oy _ )
m,p, ¢ P2 XRZ 2d2P2 IPI_P2|3 (2 15)

These equations are linear except for the cubic in the
denominator of the interaction term. We use the result
of our conservation-principle argument, |p,—p,|=p;
~const, to eliminate the nonlinear term. Dividing
though by m, we get the equations

(1+m)p1 =001 X2+ (03/2)p1+Q%p—p,) ' 2.16)
(1= =00 pr X2+ (02 /2)p,— 0p,—py) .

These coupled linear equations are exactly solvable.
We get that the two normal-mode magnetron frequencies
are

wcomzwmo_o( (7]2(1",‘"0)/(02&)‘.0)) ,

2 2 4 2 2.17)
Qs =0 o200 /0.0 O((N°05,0)/(D%04)) .

In the limit of nearly degenerate masses, nwf,, /Qr<<1,
the normal-mode motions correspond to clockwise
motion of the vectors shown in Fig. 2(b). (The small
corrections to the geometry of the modes for nondegen-
erate mass are described in Sec. IV.)

Viewed in a frame rotating at w,, the ions appear to
drift in tandem counterclockwise around twin circles cen-
tered on either side of the trap center [Fig. 2(b)]. The
ions take turns moving nearer to and further from trap
center, with a period of motion

e=27/(ws_wcom)=77'wco/‘0'2 ’

perhaps 15 sec.

From the point of view of the precision mass spectros-
copist, this tandem motion is very welcome. If its period
is short compared to the time between the pulses of a
separated oscillatory field (SOF) resonance measurement,
the ions’ orbits will average away, albeit incompletely,
the effects of field inhomogeneities that are functions of
distance from trap center. It would be better yet if p_,
were shrunk as much as possible while p, remained rela-
tively large [Fig. 2(c)]. In such a configuration the two
ions would follow each other around and around the
center of the trap, sampling almost exactly the same
fields. The specific cooling of p.,,, can be accomplished
by an extension of the standard axial-sideband-cooling
technique [12,13]. We will discuss this in detail in a fu-
ture publication.

C. Axial motion

Now that we understand the basic principles of locked
magnetron motion, we relax the requirement that the axi-
al and cyclotron radii vanish. p; and p,, are no longer
determined from the instantaneous ion positions, but
from the guiding centers of each ion’s axial-cyclotron
motion. We require that the cyclotron radii p.; and p,,
be small enough to avoid the possibility of a hard col-
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lision, that is, that p,;+p., <p,. The ion-ion potential
averaged over the cyclotron and axial motion is no longer
simply e2/p,, but is now a function of the cyclotron and
axial radii as well as p;. However, as long as the inter-ion
potential [the quantity that appears in parentheses on the
left-hand side of Eq. (2.8)] is a monotonic function of p,,
the result that p; and p,, are constants of the motion
remains valid. In the absence of hard collisions, the large
separation between the mode frequencies ensures that en-
ergy and momentum will not be transferred from axial
and cyclotron modes to the magnetron motion.

If the axial displacements z, and z, are small com-
pared to p,, then we can expand the axial component of
the ion-ion repulsive force, keeping only the dipole term
which is linear in z; —z,:

le=ez(Zl _22)/[(21 —Z )2+p§]3/2 ,

F,

z

) (2.18)
1= —F,,=myQ4z,—2z,) for |z,—z,| <p, .

Assuming a weak coupling, that is, Q% <<|w27| (for the
example of the ammonia ions already discussed, p;, =0.06
cm gives Q%/|w?n|=0.13), we get for the axial frequen-
cies

O =0, = —Q — o o + - (2.19)
z1 z1 20)20 2wzo 27’&)30 B .

W= @,y = il U 0 @’ (2.20)
z2 z2 zwzo 260,:0 2776030 .

The primed variables here refer to the frequencies
shifted by the ion-ion perturbation. As long as the axial
coupling is weak, Q?/(nw?)<<1, the perturbations are
very nearly symmetric, that is, the axial difference fre-
quency (w,; —®,,) is not significantly perturbed.

In experimentally realizable situations the dipole ap-
proximation (z, —z,) <<p, may not be valid. To obtain
an adequate signal-to-noise ratio in the axial motion
detector, the ions may well have to be driven to axial
motion with peak amplitudes a,; and a,,>p;. In this
case, the coupling is nonlinear and € is replaced with an
effective coupling (', which depends on the amplitudes
a,, and a,, and which is always less than Q. As the axial
motions damp, €}’ increases and the frequencies shift.
The signals detected after exciting the axial motion will
thus be ‘chirped.” However, if the axial amplitudes
remain equal to each other as the ions damp, the pertur-
bation remains symmetric, and the frequency difference
w,, —w,, will be only slightly perturbed.

We have established in this section a general picture of
two-ion dynamics in an experimentally interesting re-
gime, with magnetron modes of the ions tightly locked
into coordinated motion and with the axial modes per-
turbed in frequency but still independent. Ion-ion pertur-
bation of the cyclotrons frequencies, and other topics in
two-ion motion germane to precision mass spectroscopy,
will be covered in Sec. IV.

III. PRELIMINARY TWO-ION EXPERIMENTS

We describe in this section our preliminary experimen-
tal work on two-ion trapping [14]. The work demon-
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strates techniques for loading a single ion of each of two
species into the trap and shows that, with appropriate ini-
tial interion spacing, the axial motion of the two ions is
well behaved. We have worked with the doublet CO™-
N,", whose masses differ by about 4 parts in 10*. The
apparatus, described in Refs. [2] and [15], is a Penning
trap in ultrahigh vacuum at 4.2 K, in an 8.5-T magnetic
field. When the ions are tuned to be resonant with our ax-
ial motion detector, the axial frequencies of the two ion
species differ by 33 Hz out of about 160 kHz.

A pair of ions is loaded as follows: From a room-
temperature gas-handling manifold we admit a small
pulse of N, gas, which drifts down into the cryogenic
portion of the apparatus and through a hole in the upper
endcap into the trap volume, where it encounters a beam
of electrons injected from below the trap. The average
number of ions produced by electron collisions is propor-
tional to the product of the electron current and the num-
ber of molecules injected. This product has been calibrat-
ed [14] to produce, on the average, 5 ion with every gas
pulse admitted. After each pulse of gas, we test for ions
by driving the lower endcap and looking for the signal
from the axially excited ion. Occasionally, more than one
ion is trapped, in which case we dump the trap and start
again. It rarely takes more than a few attempts to catch
a single N, * ion.

Because the ionizing electron beam is thin and very
nearly coaxial with the trap, ions are initially created
near the axis of the trap, i.e., with a small magnetron ra-
dius. The moment the second ion is created, the ion-ion
separation p; will be a constant of the motion. Thus if we
wish the two-ion motion to have a particular p;, we must
control how far the initially created N," ion is from the
site of the CO ionization. Before loading the CO™ ion,
we drive the magnetron motion of the newly trapped sin-
gle N,* ion to about 0.06 cm, using a short resonant
pulse at the magnetron frequency. (The minimum radius
of the center trap electrode is 0.7 cm.) Then we proceed
as with N, to trap a single CO" ion. At the moment the
CO™ ion is created (at trap center), the N, ion is 0.06 cm
from trap center. Thus initial p; is 0.06 cm, and initial
Peom 18 0.03 cm.

When we load the second ion without preparing the
first in a large magnetron orbit, the ions are created with
Peom=pPs <0.02 cm. The axial signal detected under these
conditions is very irreproducible. Sometimes a com-
ponent of the axial signal appears at the average of the
two unperturbed frequencies, and sometimes (especially
when the ions are driven hard) we see individual signals
in the neighborhood of the unperturbed frequencies.
With the radial separation so small, the approximations
of Sec. II are not valid, and it is hard to predict what
sort of motion should occur. In any case this close-spaced
configuration is not appropriate for precision metrology
and the remainder of the measurements described in this
section were performed on ions radially spaced by about
0.06 cm.

Truly simultaneous resonance measurements on the
two ions require the ability to detect both ions simultane-
ously. Although the ions’ axial-frequency splitting, 33
Hz, is much larger than the effective bandwidth of our
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FIG. 3. The Fourier transform of the ring-down signal
detected after the axial motions of trapped single CO* and N,*
ions are simultaneously excited. The trapping voltage is modu-
lated at 15 Hz, giving rise to sidebands on the axial frequencies
of the ions. Although the axial-frequency splitting of the ions is
33 Hz, the first upper sideband of the nitrogen ion and the first
lower sideband of the carbon monoxide ion are separated by
only 3 Hz and fall within the bandwidth of the axial motion
detector. (A spurious peak, a fast-Fourier-transform artifact at
11 Hz, has been removed from the data.)

detector, we use a trick to bring components of both sig-
nals within the bandwidth of the detector simultaneously.
Adding a small ac term to the trapping voltage modulates
the frequency of the axial motion, generating sidebands
spaced by the modulation frequency vp.q. Vmoq and the
dc trapping voltage ¥V, can be adjusted to bring both the
first upper sideband of N,* and the first lower sideband
of CO* within the bandwidth of the detector. When the
axial motions of both ions are excited with a short pulse,
the transient signals from the ions are simultaneously
detectable (Fig. 3).

When both species of ion are in the trap, the observed
axial frequencies differ from single-ion, unperturbed
values. The qualitative nature of the shifts, a decrease of
roughly 1 Hz for small excitations with the shift becom-
ing less pronounced for larger axial orbits, agrees with
the model described in Sec. II. A more quantitative
comparison cannot be made with these data because at
the time the data were recorded, there was an uncertainty
in the overall calibration of orbit sizes (moreover, the
trapping voltage was drifting in time). Even without
good calibrations, however, there are several observations
to be made.

First, the ion-ion perturbation is roughly constant in
time. Over a period of 90 min, the axial-frequency shifts
changed by less than 35%. Temporal drifts in the trap-
ping voltage prevented setting a more stringent limit.
Since the perturbations scale as p; 3, these data suggest
that p; varied by at most 10%.

Second, the perturbations, even though manifestly am-
plitude dependent, were quite symmetric. In Fig. 4 the
ions have been pulsed to axial orbits larger than the radi-
al separation. As the ions’ axial motion damps, the
effective coupling becomes stronger and the frequencies
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FIG. 4. The nonlinearity of the ion-ion interaction makes the
axial-frequency perturbation amplitude dependent. (a) As the
ions damp, their frequencies may shift over several of the
Fourier-transform bin widths. In (b), we have transformed the
signal shown in (a) to extract a signal at the difference frequency
(see Ref. [16]). The sharpness of the feature in (b) is evidence
that the difference frequency remains quite constant as the ions
damp.

of both ions shift downward. This “chirp” in frequency
is on the order of several Fourier-transform bin widths,
and the transformed peaks look correspondingly messy.
But since the shifts are identical, the difference in ion fre-
quencies should remain constant, even as the individual
frequencies shift. We numerically extract [16] from the
data the difference frequency [Fig. 4(b)], which as expect-
ed is manifestly much more stable than either of the indi-
vidual motions. The same numerical routine, incidental-
ly, can extract a difference phase from the two chirped
signals, which suggests a two-ion generalization of the
phase-sensitive technique for measuring single-ion cyclo-
tron frequencies described in Refs. [2] and [17].

Determining the axial-frequency splitting of a mass
doublet is itself a mass measurement. Corrections due to
magnetic field tilt and electrostatic anharmonicites are
small and moreover should be identical for the two ions.
Most important, temporal drifts in the trapping fields
should not affect the measured mass ratio. Our measure-
ment (Fig. 5) of

0, /®0,,=0.999 799 53(16)
corresponds to a mass ratio
M(CO")/M(N,")=(w,,;/0,,)*=0.999 599 1(3) ,

in agreement with published values [2,18]. Though an
accuracy of 3 parts in 107 is not spectacular, attaining
such an accuracy by comparing the axial mode frequen-
cies illustrates the basic two-ion idea: Had we measured
the axial frequency of a single CO* ion, dumped it out,
loaded a single N, ion (a 30-min procedure), and mea-
sured its frequency, we should have been lucky to mea-
sure the mass ratio to even five times worse accuracy,
given typical drifts in the axial frequency.

Of course, it is simultaneous measurement of cyclotron,
not axial, frequencies that promises the ultimate high ac-
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FIG. 5. The difference frequency between the two observed
signals, 8v,, is measured for a variety of modulation frequencies
Vmod- Since we observe the first lower sideband of CO™ and the
first upper sideband of N, ", the difference between the frequen-
cies of the actual axial motions is equal to 2v 4 +8v,. The
combined results: v,; —v,,=33.14(3).

curacy. The remainder of this paper addresses the ques-
tion: How high can the accuracy be?

IV. MORE TWO-ION THEORY

A. Implication of the Brown and Gabrielse
invariance theorem for two-ion measurements

All told, there are six normal modes for two ions in a
Penning trap. We want to examine which of the six fre-
quencies need be measured, to what accuracy, and how
they should be combined in order to determine, to a part
in 10!, the ratio

RE(mx/mz):(1+77)/(1_’7)=‘0c2/“’c1 . (4.1)

It turns out that for a mass doublet it is sufficient to mea-
sure only three frequencies, and of these only one, the
trap cyclotron difference frequency Aw, =w,,; —w,, need
to be measured to a precision requiring two ions in the
trap simultaneously.

Brown and Gabrielse have shown [19] that for a cer-
tain class of trapping-field imperfections (i.e., the quadru-
pole electric field not axially symmetric or magnetic field
tilted with respect to the axis of the electric field), an in-
variance theorem relates the frequencies of motion in the
trap to the free-space cyclotron frequency o?=(w) )2
+0?+w?,, where 0., ©,, and w,, are the measured fre-
quencies. The equality is true to all orders for a range of
trap imperfections and provides a convenient prescrip-
tion for combining the measured trap frequencies to re-
cover the cyclotron frequency of the ion in a purely mag-
netic field. For two ions we write

(4.2a)
(4.2b)

_ 2 2 2
‘031"(‘0;1) toz ton:
2 ()2 2 2
0, =(0gn) FwHton, ,

where for the purposes of this section w;, ®,;, and o,,;
refer to the frequencies of each ion as measured in the im-
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perfect trap but unperturbed by ion-ion interaction.
Brown and Gabrielse [19] show that, for a single ion,

eV,
o~

z1
m,d?

1—1sin%0 , 4.3)

1+§cos(2¢)]

where € specifies the out-of-roundness of the electric field
and 0 and ¢ the tilt angle of the magnetic field. For two
particles of masses m,; and m, in the same fields, we can
approximate

0 ~Rw?, . (4.4)

How good is this approximation? For a typical mass
doublet with mass less than 30 amu, and for reasonable
trap parameters, the four quantities (@,9/w.)% 1, sin®é,
and € are each less than 1073, so we ignore terms quartic
in any combination of these four quantities. The error in
Eq. (44), for example, is on the order of
N @,9/@.0)*sin%0, which contributes an error of order
M @,0/®,0)*sin’0 (less than 10~ '2) to the final determina-
tion of R [Eq. (4.6)]. Consistent with an overall error of
less than 10~ '2, we may also approximate

wfnzzwfnl . (4.5)
Using the approximations (4.4) and (4.5), we subtract

Eq. (4.2a) from Eq. (4.2b) and solve for R:
2 2 (Aw)y N Awl =20k, "

@21 7]
(a)cl _0)51/2&)01 )2

2

R=—1+
2(061

1—

26031
(4.6)

and with no loss in accuracy at the part in 10'? level, we
can replace w?, in Eq. (4.6) with measured values:

0} =0+ 02, +H(w? /200,)? . @.7)

Thus to measure the mass ratio to a part in 10'}, it is
sufficient to measure only three quantities, w,;, @,;, and
Aw,=w, —a,,. The first two quantities may be mea-
sured to relatively low accuracy, compared to the accura-
cy ultimately desired for R. The requisite precision for
w,, is lower than that desired for R by a factor of (27) !,
and for w,,, by a factor of (21) ™ Nw,q/w,)%. At the level
of a part in 10® for the cyclotron frequency and parts in
10° for the axial frequency, drifts in electric and magnetic
fields are much less important, so in practice one can
measure o, and w,; before putting the second ion in the
trap, thereby ensuring that ion-ion interactions will not
be a problem. Aw, is extremely sensitive to drifts in the
magnetic and electric fields, and thus must be measured
with two ions in the trap.

This treatment in this subsection ignores ion-ion per-
turbation, spatial variation of the magnetic field, and
nonquadrupole components of the electric field. Realisti-
cally, all these effects will be present. Their effects are ad-
dressed in the next two subsections.

B. Ion-Ion perturbation of the cyclotron frequency

As a first pass at the important question of ion-ion per-
turbation of the cyclotron difference frequency, we solve
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the set of linear differential equations approximate to the
following idealized situation: The guiding centers of the
cyclotron orbit of each ion are stationary, separated by p;
along the x axis. In this picture, there is no trap electric
field, no time-averaged net force between the two ions,
and the magnetic field is not B, but B;. The idea here is
not to represent the trap realistically but rather to pro-
vide the simplest possible mathematical framework that
still preserves the two-dimensionality of the ion-ion cy-
clotron coupling. If the cyclotron radii are small com-
pared to p,, we can approximate the interaction force as
a linear function of ion displacements r; from the guiding
centers:
elr,—r,+p,X) e’p%
= -

In—n+p3P P

~—2myQ%x,; —x,)X+myQ%y,—y, ¥ (4.8)

and F,=—F,. When we include the Lorentz force, we
get a system of four linear differential equations for the
motion of the two ions in two dimensions. Guessing solu-
tions,

x,=Re(A4,,e""), x,=Re(A4,,e'),

: . 4.9
y1=Re(A4,e'), y,=Re(A4,e'”),
and solving the characteristic equation for o, we get
0= wy/(1—9)+ Q% /(2w,)+ Q* /(8703)
+0(Q%n*w3)) ,
(4.10)

0, =wo/(1+1)+Q2/(20y) — Q* /(87w})
+0(Q°/(n*a})) .

The answer is reassuring. The error in the all-important
difference frequency 6(w, —,) can be very small:

8w, —wy)/0y=Q*/(4nwf) . @.11)

In our example of the two ammonia molecules, for
ps =0.10 cm,

8w, —w,) /=107 .

But we must be careful. Although the perturbation in
the difference frequency is small, the perturbation in ei-
ther frequency alone is considerable. In the example just
cited, 8w; /wy=2X107°. Thus if we aspire to a part in
10! accuracy, we rely on the perturbation being sym-
metric to better than a percent. As we have seen, this is
true in the case of linear coupling, but what if the cyclo-
tron radii are large enough to be a non-negligible fraction
of the ion separation? For coupling beyond the linear ap-
proximation, the size of the frequency perturbation will
depend on the cyclotron radii, and if the cyclotron radii
of the two ions are not exactly the same, we shall see that
the ion-ion perturbations are not symmetric.

We will study the effect of nonlinear coupling using an
approximation which keeps terms in the force expansion
[Eq. (4.8)] out to order x?, but which is in spirit lowest
order in the coupling. At this level of approximation we
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treat the orbits as circular (that is, orbit shape is unper-
turbed; only frequency is recalculated) and treat the
motions of the two ions as uncorrelated (that is, for the
purpose of calculating the force on one ion, the other ion
is imagined to be a thin ring of uniform charge density
with radius p;). The force on ion 1 is

Fiem O —2x,+3(x] — 1y} +1pk)/p,
+(—=3p5x; —4xi+6x,y])/pl 1R
+moQy, —3x,y, /p,+(Gpht6xly, — 3y} /21§
(4.12)

and similarly for ion 2. Using the unperturbed orbits to
calculate the lowest-order perturbation to the fundamen-
tal frequencies, we get

o1 =wy/(1=1)+Q%/(20))[ 1+ (2p?, +2p2,) /p?]

+0(Q*/(9w}))
5 (4.13)
0y =wo/(1+0)+Q?/(20y)[ 1 +(2p?, +30%) /p?]
+0(Q*/(nw}))
and thus the error in the difference frequency is
8w, —w,)/0y=[90%/(1603) [ (p%,—p%) /p?] .  (4.14)

For reasonable experimental values of p,, p.;, and p_,,
the error due to nonlinear coupling [Eq. (4.14)] will be
larger than the error due to purely linear frequency pul-
ling [Eq. (4.11)]. We discuss the implications in Sec. V.

C. The magnetron motion when the ion masses are not equal

We shall show in this section that when the ion masses
are not exactly the same, the average magnetron radii are
not the same for the two ions. This difference in the aver-
age magnetron radii causes a systematic error in measur-
ing the difference in the cyclotron frequencies if the trap-
ping fields have spatial inhomogeneities that depend on
the radial distance from trap center.

For ions of approximately equal mass, the conservation
of energy and angular momentum [Egs. (2.7) and (2.8)]
severely constrain the range of possible paired-ion
motion. The configuration which satisfies the conserva-
tion laws to first order in w2, /Q? shown in Fig. 6, is a
modification of the degenerate mass orbit. The ions trace
out twin circles on either side of the origin, and both cir-
cles themselves orbit the origin. As in the degenerate
case, the centers of the circles are colinear with the ori-
gin, but in the nondegenerate case the distances from
each circle’s center to the origin differ from each other,
and the radii of the circles are unequal as well. The dis-
tances s; and c; defined in Fig. 6, are given by

5 =ps(1+6mag)/2’ S2 =Ps(1~8mag)/2 ’ (415)
clzpcom(l_amag)’ C2 =pcom(1+8mag) ’

where 6mag=nmfno /(202). As the mass difference 7 van-
ishes, p . and p, take on their original significance and
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FIG. 6. Conservation laws dictate the allowed orbits for two
trapped ions of unequal mass. To first order in nw?,,/Q?, the
pictured orbits conserve angular momentum and energy. By
analogy with the degenerate mass limit [Fig. 2(b)], 6 is
@; — ®com- In the nondegenerate case, 6 has a slight dependence
on 6.

we recover the mass degenerate configuration shown in
Fig. 2(b).

Errors from field imperfection are proportional to the
time-averaged moments of the radii:

$arpr [ 7d6c1 /6y
$ar — [Tag(1/6)
0

The instantaneous frequency difference between the two
modes, 0, determines the rate at which the two ions take
turns moving closer to and further from the center of the
trap, and is basically a consequence, if viewed in a frame
rotating with the common mode, of the E-cross-B drift
induced by the interaction electric field. A simple esti-
mate based on the separation between the ions, as deter-
mined from Fig. 6, and on the resulting EXB velocity,
shows how 6 depends on 6:

86/6=3(peom/ps N Mak,0/Q?) cosb .

(pI)= (4.16)

(4.17)

To find the mean difference {pi—p3), the critical quanti-
ty in assessing the lowest-order error caused by nonideal
fields, we evaluate the integral (4.16) for n =2:

2.2
Ps@mo

20?2 1+0

(p}—p3)= (4.18)

2
Pcom ]

Ps

As we shall see in Sec. V, the key result here is that the
difference in the mean-square radii scales as p?/Q? that
is, it scales as pz.

V. AN ECONOMY OF ERRORS

In Sec. IV, when we applied the invariance theorem to
two-ion measurements, we learned that part-per-10'
mass comparison requires three frequency measurements:
two of single-ion frequencies and one of the two-ion cy-
clotron difference frequency. Errors affecting single-ion
measurement have been thoroughly discussed elsewhere
[16,20,21], so in this section we discuss only the various
sources of error that affect the measurement of the cru-
cial two-ion cyclotron difference frequency.

Sources of error in measuring Aw,=w0,,—w,, fall
roughly into three categories. The first category consists
of systematic errors having to do with field flaws and
ion-ion perturbation. These errors scale as high powers
of p; and of 1/p,, respectively. In the second category
are random errors associated with the measurement-to-
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measurement thermal fluctuations in the cyclotron radii.
Into the third category we lump everything else, a
hodgepodge of effects, all smaller than those in the first
two categories.

A. Systematic errors associated with the magnetron motion

Assuming that we have cooled p,,,, the scale of several
of the largest sources of error is determined by p,, the
distances that magnetron mode-locking maintains be-
tween the guiding centers of the cyclotron motions. The
ion-ion perturbation of Aw’ scales as Q*~1/p$ in the
linear limit [Eq. (4.11)], and unequal cyclotron radii give
rise to a nonlinear perturbation that scales as
Q%/p?~1/p] [Eq. (4.14)]. On the other hand, the
difference between the ions’ mean-square distances from
the center of the trap [Eq. (4.18)] scales as p2/Q2, so er-
rors in Aw,, due to field flaws scale as p] or higher power.
Using Eqgs. 10.15 and 10.18 from Ref. [20] and Eq. (4.18)
above, we determine the averaged perturbation to the
difference frequency from field flaws:

(840, /w,)=[—B,/2— 3 w2y/w)C4/d?]

X [mowk,gmp; /(2¢*)] , (5.1)

where B, and C, are the lowest-order imperfections in
the magnetic and electric fields, respectively, defined, for
example, in Ref. [20].

If we measure the difference frequency several times,
varying p,, we an trace out the curve of measured Aw,
versus p,. The high-power-law dependence on p; and
1/p, should be very distinctive (Fig. 7). The total error

—4 -

1 1 1 1 1

0 025 050 0.7 1.00 125 150 1.75
Magnetron Radius (as fraction of optimum)

FIG. 7. Projected error in the measured value of w,; — ., as
a function of p,. Errors from ion-ion perturbation scale as p; >,
and errors from trapping-field flaws scale as p]. In this example,
B, and C, are the dominant field flaws and there is a systematic
imbalance in the driven cyclotron radii of 1% out of an average
cyclotron radius of 0.019 cm. The solid line corresponds to
B,,C, <0 and the dotted line to B,,C4>0. The optimum value
of the magnetron radius is defined here as the value of p; at
which the two sources of error make equal contributions. Ex-
perimentally, p; can be varied in order to determine the region
where the curve is relatively flat and the total error relatively
small.
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in Aw, will be minimized by using a value measured
along the flat section of the curve. Experimentally, an es-
timate of the residual error can be obtained by checking
just how flat the curve is in the optimum region. As we
reduce trapping-field imperfections, we can operate at
larger values of p, and reduce errors both from ion-ion
interaction and from field gradients.

Suppose that an imbalance in the cyclotron drive elec-
tronics produces cyclotron radii which differ by 1% out
of the mean radius of 0.019 cm. Suppose further that we
have reduced the lowest-order field flaws until
|B,| <1X1077/cm? and |C,| <2X 1075,

Our laboratory experience leads us to believe these
values are attainable [2,16]. Comparing the contributions
to the error given by Eq. (4.14) and by Eq. (5.1), we find
that the optimum separation will be around p; =0.10 cm
(Fig. 7). The effects combined cause an error in the mea-
sured value of Aw./w, of about 3X 1072 There is a
range of possible values of p,, from 0.075 to 0.13 cm, for
which the total error associated with the magnetron
motion will be less than 7X 10~ 2,

The important point of this section is that errors which
depend on the magnetron radius depend on it sharply.
This remains true even if field flaws of higher order than
B, and C, are dominant, and it remains true whether
linear or nonlinear coupling causes the major error from
ion-ion repulsion. In all cases the sharp divergence of the
measured difference frequency at large and at small ion-
ion separations will indicate the optimum operating re-
gime and suggest the magnitude of the residual error.

B. Thermal errors associated with the cyclotron radii

Field flaws, nonlinear ion-ion interaction, and special
relativity all give the cyclotron frequency a dependence
on the cyclotron radius p.. In a trap tuned to the
specifications mentioned above, the field flaw terms con-
tributing to this dependence are relatively insignificant.
The frequency corrections to the trap cyclotron
difference frequency from special relativity and nonlinear
interaction are

8(Aw, /0q0)=[ —wko/(2¢1)+90 /(16w30]) (pZ, —p2) -

(5.2)

Even if care is taken to ensure that the electronics that
generate and deliver the rf pulses used to drive the cyclo-
tron motion produce the same amplitude pulse at both
frequencies, thermal errors will be troublesome. Residual
thermal cyclotron motion will add randomly to the
driven response, causing random and in general unequal
fluctuations in the cyclotron radii. Although thermal
effects will not shift the average measured difference fre-
quency from its correct value, the fluctuations may be
large enough to require an impractical number of mea-
surements to obtain the desired overall precision.

For example, in our experiments the cyclotron motion
is cooled to a T, =(w,/w,)T,, where T, is the effective
temperature of the resistance the axial motion sees—for
our axial detector, 7,=4.2 K. For our ammonia dou-
blet, the cyclotron cooling limit corresponds to an rms
cyclotron radius for each ion
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({p%))/2=0.0009 cm .

With our existing detector sensitivity, we must drive the
ions to p,;=0.019 cm to get the requisite signal-to-noise
ratio to measure the difference frequency. At an ion-ion
separation p,=0.10 cm, the dominant contribution to
thermal fluctuations is from special relativity, at about 5
parts in 10'! per measurement. Since a single measure-
ment with 5-parts-in-10'! resolution requires hundreds of
seconds, averaging the thermal fluctuations to a part in
10" would take hours of data collection. Clearly, efforts
to improve detector sensitivity and cyclotron cooling
methods will pay off.

C. Other perturbations at parts in 10'?

At parts-in-lO12 accuracy, several little effects start to
become significant. Among them are the following:

(i) Dipole-dipole interaction of the cyclotron motion
with its image charge in the electrodes. Van Dyck et al.
[22] have shown that, especially in small traps, this effect
can be significant. For our larger trap with characteristic
size d =0.55 cm, this effect is on the order of two parts in
10!, but should be the same for both ions to better than a
part in 10'2,

(ii) Cyclotron frequency dependence on axial radius.
Because we do not have to measure the axial frequency
during a precision cyclotron measurement, the axial dis-
placement can be very small—just the thermal value.
The highest-precision, long-period measurements will
span many thermal equilibration periods, so that both
ions will have many opportunities to reequilibrate with
the effective resistor in the axial motion detector, which
will thoroughly average away any initial differences in
thermal axial displacement the two ions might have.
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(iii) Field changes caused by loading and purifying the
ions. This effect may well cause shifts in the single-ion
cyclotron frequency at the part-in-10'" level. But recall
from Sec. IV the relative accuracies demanded of the
three necessary frequencies. Our experience has been
that loading and unloading ions from the trap does not
cause any shift in the cyclotron frequency at the part-in-
10° level, nor any shift in the axial frequency larger than
a part in 10°. Of course, any frequency change caused by
loading or unloading ions is irrelevant to the simultane-
ous trap cyclotron difference frequency. Thus field
changes caused by loading and purifying ions should
cause] 2no error in determination of the mass ratio to parts
in 10

VI. CONCLUSION

Our study of the the interacting motion of two simul-
taneously trapped ions supports the conclusion that tem-
poral field drifts, special relativity, field imperfections,
and ion-ion interaction pose no obstacles to part-in-10'!
mass spectroscopy. Improvements in cyclotron cooling
should bring part-in-10'? accuracy within reach. But no
matter what one is trying to measure, attempting two-
orders-of magnitude improvement in accuracy is likely to
bring one up against unforeseen sources of error. Only
experiment can be reassuring on this point.
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